Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis.

نویسندگان

  • Daniel A Llano
  • S Murray Sherman
چکیده

Intrinsic properties, morphology, and local network circuitry of identified layer 5 and layer 6 auditory corticothalamic neurons were compared. We injected fluorescent microspheres into the mouse auditory thalamus to prelabel corticothalamic neurons, then recorded and filled labeled layer 5 or layer 6 auditory cortical neurons in vitro. We observed low-threshold bursting in adult, but not juvenile, layer 5 corticothalamic neurons that was voltage and time dependent with nonlinear input-output properties, whereas adult layer 6 corticothalamic neurons demonstrated a regular spiking. Layer 5 corticothalamic neurons had larger somata, thicker apical dendrites and were more likely to have a layer 1 apical dendrite than layer 6 neurons. Using laser photostimulation, identified layer 5 corticothalamic neurons received excitatory input from a wide area of layers 2/3, 4, and 5 with widespread gamma-aminobutyric acidergic input from layer 2/3 and lower layer 5, whereas layer 6 corticothalamic neurons from the same cortical column received circumscribed excitatory input and discrete patches of inhibition derived from layer 6 of adjacent columns. These data demonstrate that layer 5 and layer 6 corticothalamic neurons receive unique sets of inputs and process them in different manners, supporting the hypothesis that layer-specific corticothalamic projections play distinct roles in information processing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems.

We tested the hypothesis that information is routed from one area of the auditory cortex (AC) to another via the dorsal division of the medial geniculate body (MGBd) by analyzing the degree of reciprocal connectivity between the auditory thalamus and cortex. Biotinylated dextran amine injected into the primary AC (AI) or anterior auditory field (AAF) of mice produced large, "driver-type" termin...

متن کامل

Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a.

Layer 6 corticothalamic neurons are thought to modulate incoming sensory information via their intracortical axons targeting the major thalamorecipient layer of the neocortex, layer 4, and via their long-range feedback projections to primary sensory thalamic nuclei. However, anatomical reconstructions of individual layer 6 corticothalamic (L6 CT) neurons include examples with axonal processes r...

متن کامل

Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties.

Layer V pyramidal neurons are anatomically and physiologically heterogeneous and project to multiple intracortical and subcortical targets. However, because most physiological studies of layer V pyramidal neurons have been carried out on unidentified cells, we know little about how anatomical and physiological properties relate to subcortical projection site. Here we combine neuroanatomical tra...

متن کامل

Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling study.

A sample of 84 neurons in lamina VIa of rat somatosensory cortex (S1) was juxtacellularly labeled with biocytin, and the axons of the neurons were traced. Three classes of cells were identified as corticothalamic, corticocortical, and local circuit neurons. Corticothalamic cells (46%) are small, short pyramids projecting either to the ventral posteromedial nucleus alone or to the posterior grou...

متن کامل

VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback.

Sensory information originating in individual whisker follicles ascends through focused projections to the brainstem, then to the ventral posteromedial nucleus (VPM) of the thalamus, and finally into barrels of the primary somatosensory cortex (S1). By contrast, the posteromedial complex (PoM) of the thalamus receives more diffuse sensory projections from the brainstem and projects to the inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2009